

Space Weather Prediction Testbed

Rodney Viereck

Director, Space Weather Prediction Testbed
Space Weather Prediction Center

Outline

- Review of Customers
- Space Weather Prediction Testbed (SWPT)
 - Objectives
 - Organization
- Research-to-Operations activities (R2O)
- Operations-to-Research (O2R)

Space Weather Services: Critical to the World's Economy and Security

NOAA Stoce Weather Production Testing

Electric Utilities

- Potential for significant disruption of service due to geomagnetic storm with major \$ consequences
- FEMA addressing potential impacts related to space weather events through simulated exercise

Aviation

- Polar route use ~11,000 flights in 2011
- Next Generation Air Transportation System GPS based

Communication

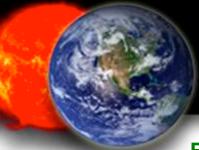
• HF radio communication heavily relied upon by airlines, DOD, Emergency Managers, Search and Rescue, etc...

• GPS

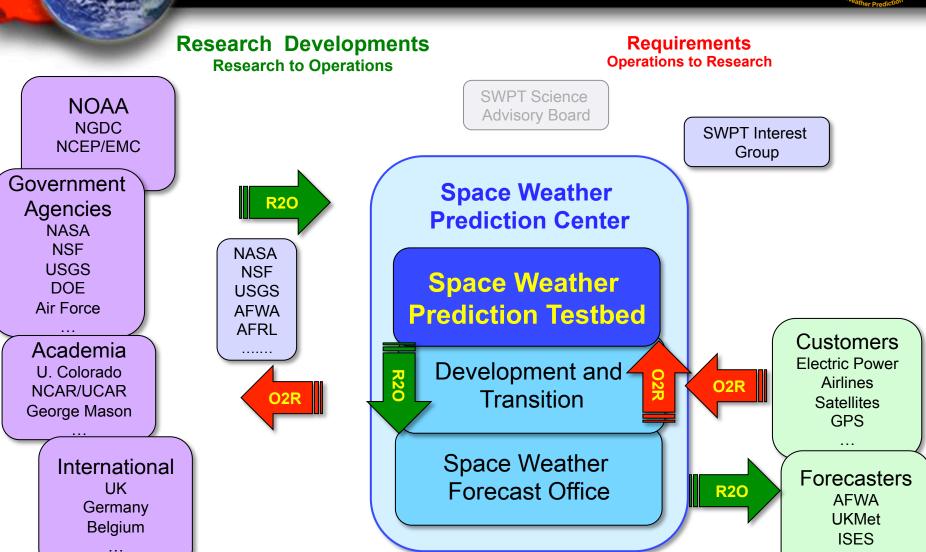
- Single biggest source of error is ionosphere
- Strong growth in applications surveying, drilling, precision agriculture, navigation, aviation

Space Systems

- World satellite industry revenues in 2008: >\$144 billion
- Space weather support is critical for manned space flight and NASA robotic missions


SWPT Objectives and Mission

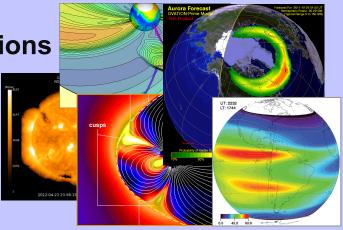
Mission: To infuse new research and technology into operational space weather products and services thus improving the alerts, watches, warnings and forecasts of the Space Weather Prediction Center.


Objectives:

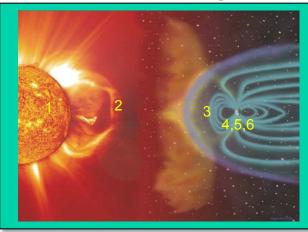
- Identify and investigate new modeling capabilities, research developments, and observational advances.
- Test and validate promising numerical codes and forecast techniques emerging from the research community
- Conduct and support focused research on forecast models and observational systems
- Develop usable customer-based metrics for model evaluation and forecast performance
- Identify operational requirements and translate them into research requirements for future scientific support

Organization

SWPT Organization


- Supervisory
 - SWPC Director: Ultimate decision authority
 - SWPT Director: Responsibility to deliver
- Staffing
 - 6 Feds (Scientists)
 - 21 CU/CIRES (Scientists, Postdocs, Students)
- SWPT Interest Group:
 - Communication with and recommendations from users, commercial service providers, academic community
- Scientific Advisory Board:
 - Oversight and advisory
- Concept of Operations currently under review
- Funding
 - NOAA SWPC Base Funds
 - NASA, NSF, DOD Grants

Research-to-Operations


- Research
- Applied Research
- Model Development
- Test/Evaluation
- Transition
- Operations Support

Operations-to-Research

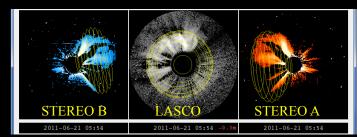
- Customer Requirements
- Observation Requirements
- Research Requirements

Regions of Space

Sun-to-Earth

- 1. Solar
- 2. Heliosphere
- 3. Magnetosphere
- 4. lonosphere
- 5. Thermosphere
- 6. Atmosphere

- Forecast solar flares: Using helioseismology to evaluate flare probabilities
- Improving Inputs for WSA-Enlil: Refine tools and forecaster techniques (training)
- Prepare for NOAA/NASA/DOD DSCOVR launch (2014): Observation/sensor requirements, Algorithm developments
- Magnetosphere/Geospace Model: Evaluate suite of models from research community (partnership with NASA)
- Ovation Aurora Forecast Model: Validate, improve, transition to ops.
- USTEC GPS Accuracy Product: Expand to Alaska Region, Develop global product
- Prepare for COSMIC II Mission (2016): Define latency requirements and downlink network
- Develop Ionospheric Specification Products:
- Develop Whole Atmosphere Model (WAM):
- GOES R Proving Ground: Develop synoptic maps of the sun
- JPSS Solar variability and climate forcing:
- Space Weather Risk Assessment
- Customer/media training
- Extreme Events: How big could a space weather storm be?
- International Collaboration: UKMet, EU, Korea, Taiwan,


WSA - Enlil

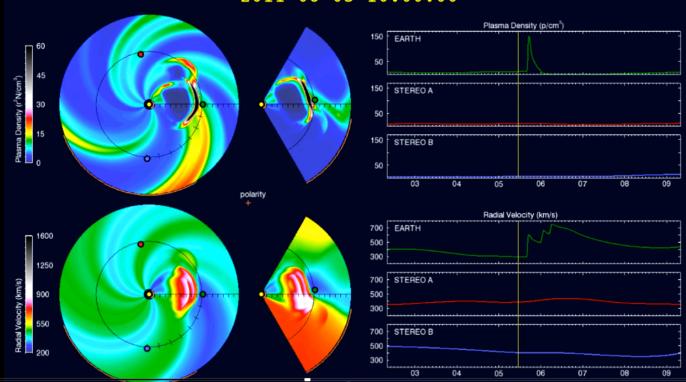
Wang-Sheely-Arge-Enlil (WSA-Enlil) Model of the Solar Wind

3-View Tool for CMEs

First Operational Physics-based space weather model running at NCEP

Greatly improved accuracy of geomagnetic storm forecasts.

2011-08-05 10:00:00


Storm Arrival Time


- Before +/- 18 Hours
- After +/- 6 Hours

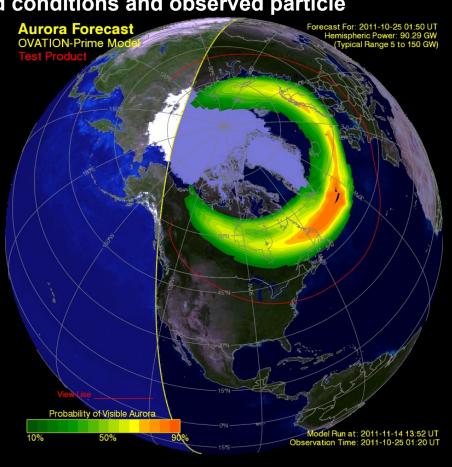
Inputs: Solar magnetograms, so coronagraphs

Outputs: Solar wind speed and

Earth

- Forecast solar flares: Using helioseismology to evaluate flare probabilities
- Improving Inputs for WSA-Enlil: Refine tools and forecaster techniques (training)
- Prepare for NOAA/NASA/DOD DSCOVR launch (2014): Observation/sensor requirements, Algorithm developments
- Magnetosphere/Geospace Model: Evaluate suite of models from research community (partnership with NASA)
- Ovation Aurora Forecast Model: Validate, improve, transition to ops.
- USTEC GPS Accuracy Product: Expand to Alaska Region, Develop global product
- Prepare for COSMIC II Mission (2016): Define latency requirements and downlink network
- Develop Ionospheric Specification Products:
- Develop Whole Atmosphere Model (WAM):
- GOES R Proving Ground: Develop synoptic maps of the sun
- JPSS Solar variability and climate forcing:
- Space Weather Risk Assessment
- Customer/media training
- Extreme Events: How big could a space weather storm be?
- International Collaboration: UKMet, EU, Korea, Taiwan,

R20: Forecasting the Aurora



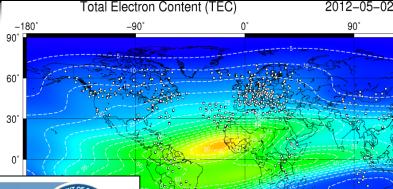
 Requirement: Specification and forecast of aurora (location, energy input to ionosphere, etc...)

 Solution: OVATION Prime, an empirical model of auroral particle precipitation based on correlations between solar wind conditions and observed particle

precipitation.

- Task 1: Transition the current Ovation model from research to operations.
 - Validation of model performance
 - Developing outputs for customers
 - Develop AWIPS-2 Output
- Task 2: Improve the model
 - Expand to full range of geomagnetic storms
 - Develop fall back capability when ACE solar wind not valid (e.g. proton contamination)
 - Develop long-range forecast capabilities using WSA-Enlil

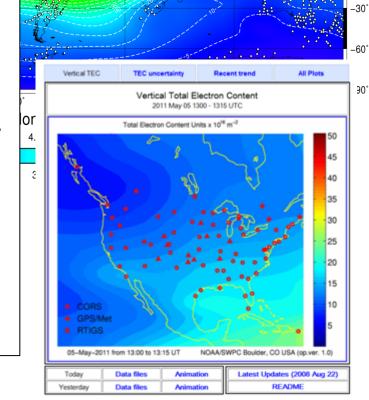
- Forecast solar flares: Using helioseismology to evaluate flare probabilities
- Improving Inputs for WSA-Enlil: Refine tools and forecaster techniques (training)
- Prepare for NOAA/NASA/DOD DSCOVR launch (2014): Observation/sensor requirements, Algorithm developments
- Magnetosphere/Geospace Model: Evaluate suite of models from research community (partnership with NASA)
- Ovation Aurora Forecast Model: Validate, improve, transition to ops.
- USTEC GPS Accuracy Product: Expand to Alaska Region, Develop global product
- Prepare for COSMIC II Mission (2016): Define latency requirements and downlink network
- Develop Ionospheric Specification Products:
- Develop Whole Atmosphere Model (WAM):
- GOES R Proving Ground: Develop synoptic maps of the sun
- JPSS Solar variability and climate forcing:
- Space Weather Risk Assessment
- Customer/media training
- Extreme Events: How big could a space weather storm be?
- International Collaboration: UKMet, EU, Korea, Taiwan,



COSMIC 2: Ionospheric Data

Current products use ground-based GPS data

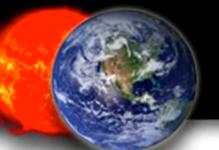
- Gaps over oceans filled with climatologically models
- Satellites provide the best way to get global coverage
- Satellite Radio Occultation provides ionospheric profiles



NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

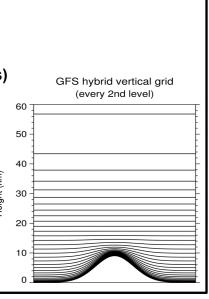
COSMIC-2 moving forward!

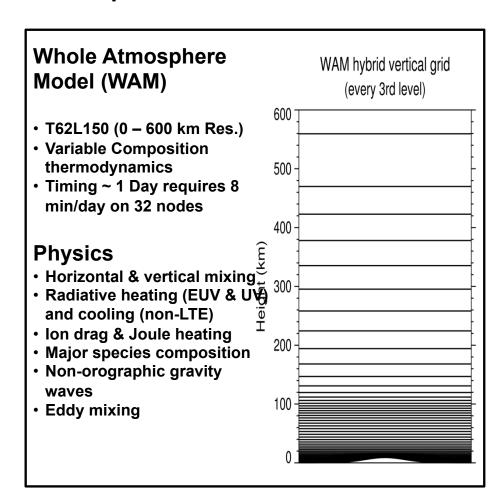
COSMIC- 2 Operational Mission

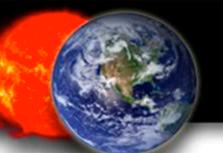

- Supporting both space and terrestrial weather
- Taiwan building the spacecraft
- US Air Force Building the Sensors
- NOAA establishing downlink and processing
- 6 Equatorial (Launch 2016)
- 6 Polar (Launch 2018)
- 15,000 Ionospheric Soundings per Day
- Developing Data Assimilation Schemes

- Forecast solar flares: Using helioseismology to evaluate flare probabilities
- Improving Inputs for WSA-Enlil: Refine tools and forecaster techniques (training)
- Prepare for NOAA/NASA/DOD DSCOVR launch (2014): Observation/sensor requirements, Algorithm developments
- Magnetosphere/Geospace Model: Evaluate suite of models from research community (partnership with NASA)
- Ovation Aurora Forecast Model: Validate, improve, transition to ops.
- USTEC GPS Accuracy Product: Expand to Alaska Region, Develop global product
- Prepare for COSMIC II Mission (2016): Define latency requirements and downlink network
- Develop Ionospheric Specification Products:
- Develop Whole Atmosphere Model (WAM):
- GOES R Proving Ground: Develop synoptic maps of the sun
- JPSS Solar variability and climate forcing:
- Space Weather Risk Assessment
- Customer/media training
- Extreme Events: How big could a space weather storm be?
- International Collaboration: UKMet, EU, Korea, Taiwan,

Whole Atmosphere Model Extending the Global Forecast Systems Model

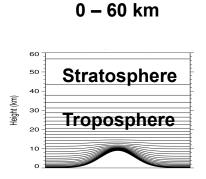

WAM models the neutral atmosphere up to 600 km altitude to include the mesosphere and thermosphere


Global Forecast System (GFS) model

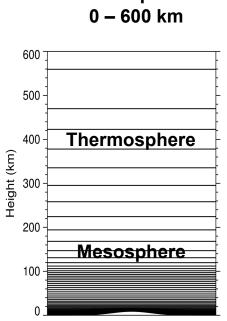

- Operational weather model
- T382L64 (~0-60 km Res.)
- 4 forecasts daily
- Global ensemble (14 members) forecasts up to 16 days

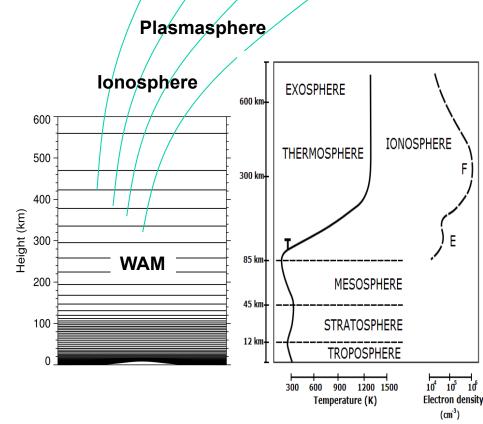
Physics

- O3 chemistry & transport
- Radiative heating and cooling
- Cloud physics & hydrology
- Surface exchange processes
- Orographic gravity waves
- Eddy mixing and convection


R20: Integrated Dynamics in Earth's Atmosphere

Whole Atmosphere Model (WAM = Extended GFS) Ionosphere Plasmasphere Electrodynamics (IPE) Integrated Dynamics in Earth's Atmosphere (IDEA = WAM+IPE)

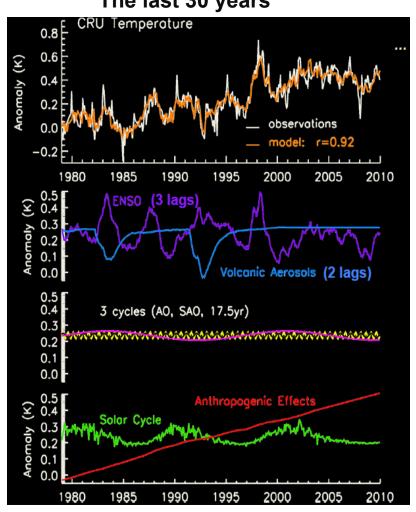

Ionosphere **Plasmasphere** Electrodynamics **IPE** Model



WAM

GFS

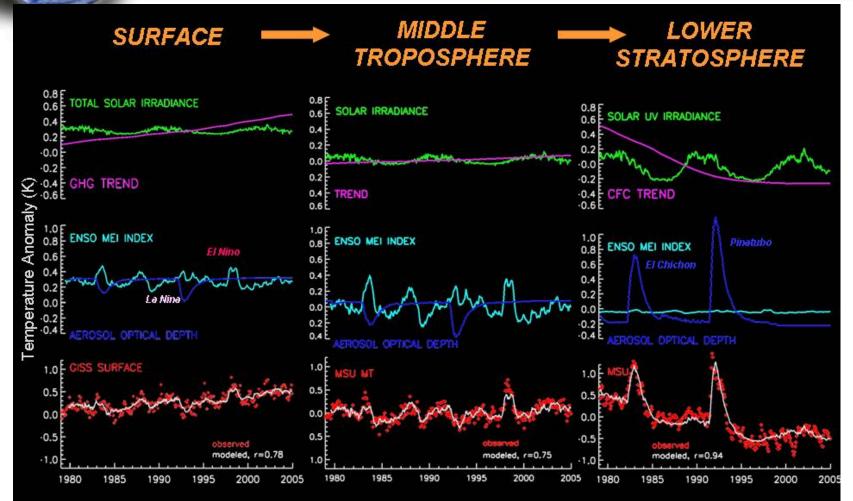
- Forecast solar flares: Using helioseismology to evaluate flare probabilities
- Improving Inputs for WSA-Enlil: Refine tools and forecaster techniques (training)
- Prepare for NOAA/NASA/DOD DSCOVR launch (2014): Observation/sensor requirements, Algorithm developments
- Magnetosphere/Geospace Model: Evaluate suite of models from research community (partnership with NASA)
- Ovation Aurora Forecast Model: Validate, improve, transition to ops.
- USTEC GPS Accuracy Product: Expand to Alaska Region, Develop global product
- Prepare for COSMIC II Mission (2016): Define latency requirements and downlink network
- Develop Ionospheric Specification Products:
- Develop Whole Atmosphere Model (WAM):
- GOES R Proving Ground: Develop synoptic maps of the sun
- JPSS Solar variability and climate forcing:
- Space Weather Risk Assessment
- Customer/media training
- Extreme Events: How big could a space weather storm be?
- International Collaboration: UKMet, EU, Korea, Taiwan,



Solar Forcing of Climate

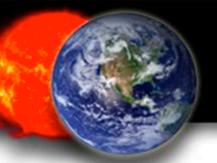
Solar contribution to climate change

The last 30 years


Empirical Model

- Fitting the climate forcing functions to the observations
- **Explains 75% of the variance**
- Magnitude of solar forcing is of similar magnitude to other forcing functions
- Model works going back 130 years

Solar Forcing of Climate Up Through the Atmosphere



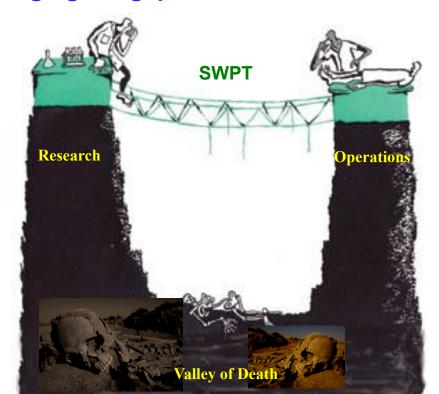
<u>Approach</u>: Michels & Knappenberger, 2000; Douglass & Clader, 2002; Van Loon and Shea, 2000; White et al., 1997 <u>Data</u>: Sato et al., 1993; Klaus Wolter, NOAA; Christy et al., 1998; GISS



- Forecast solar flares: Using helioseismology to evaluate flare probabilities
- Improving Inputs for WSA-Enlil: Refine tools and forecaster techniques (training)
- Prepare for NOAA/NASA/DOD DSCOVR launch (2014): Observation/sensor requirements, Algorithm developments
- Magnetosphere/Geospace Model: Evaluate suite of models from research community (partnership with NASA)
- Ovation Aurora Forecast Model: Validate, improve, transition to ops.
- USTEC GPS Accuracy Product: Expand to Alaska Region, Develop global product
- Prepare for COSMIC II Mission (2016): Define latency requirements and downlink network
- Develop Ionospheric Specification Products:
- Develop Whole Atmosphere Model (WAM):
- GOES R Proving Ground: Develop synoptic maps of the sun
- JPSS Solar variability and climate forcing:
- Space Weather Risk Assessment
- Customer/media training
- Extreme Events: How big could a space weather storm be?
- International Collaboration: UKMet, EU, Korea, Taiwan, ...

O2R: Requirements for Space Weather Research

- Forecasts of Solar Flares (timing and magnitude)
 - Flares are the precursor to all major space weather storms
- Forecasts of Solar Energetic Particle events and Radiation Storms
 - Research required to insert energetic particles and electromagnetic shock physics into heliospheric models such as WSA-Enlil
- Long lead-time warning of Coronal Mass Ejection arrival
 - Improvement to initialization of background and CMEs in WSA-Enlil
 - Challenge: Forecast of Bz!
- Spatially resolved forecasts of geomagnetic activity
 - Requires magnetosphere model driven by solar wind.
- Forecasts of the location and intensity of the Aurora
 - Coupling WSA-Enlil output to the OVATION Prime model
 - Challenge: <u>Forecasting Bz</u>
- Prediction of ionospheric scintillations and TEC gradients
 - Coupled atmosphere-ionosphere models
 - Challenges:
 - Coupling with magnetospheric drivers
 - Forecasting solar energy inputs
 - Developing space weather data-assimilation schemes
- Data Assimilation in all areas of space weather
- The development of ensemble forecast in space weather



Space Weather Prediction Testbed

- Part of the Space Weather Prediction Center
- R2O: Bringing new research into the operational forecast center
- O2R; Bringing the needs of customers and forecaster to the research community

Bridging the gap between research and operations

